

Transmissionselektronenmikroskopie

Prof. M. Rettenmayr, Dr.-Ing. Martin Seyring

Gliederung

1. Einführung

- Vergleich TEM LM
- Wechselwirkung Materie Elektronen
- 2. Probenpräparation
- 3. Spektroskopie (Chemische Analyse)
 - EDS
 - EELS
 - Gegenüberstellung

Gliederung

- 4. Elektronenbeugung
 - Typen von Beugungsmustern: SAD, Kikuchi, CBED, NBED
 - Wiederholung reziprokes Gitter
 - SAD: Strahlengang, Indizierung
 - Kikuchi-Muster: Entstehung, Orientierung von Proben
 - CBED: Entstehung, Informationsgehalt
- 5. Kontrasttheorie
 - Masse-Dicken-Kontrast
 - Beugungskontrast
 - Hellfeld/Dunkelfeld
 - Phasenkontrast (HRTEM)

- Hornbogen, E. and B. Skrotzki. *Mikro- und Nanoskopie der Werkstoffe*. 2009, Springer-Verlag, http://dx.doi.org/10.1007/978-3-540-89946-4
- Williams, D.B. and C.B. Carter, *Transmission electron microscopy : a textbook for materials science*. 1996, Plenum Press
- Fultz, B. and J.M. Howe. *Transmission electron microscopy* and diffractometry of materials. 2008, Springer-Verlag, <u>http://dx.doi.org/10.1007/978-3-540-73886-2</u>
- Kirkland, A.I. and J.L. Hutchison, Nanocharacterisation, 2007, Royal Society of Chemistry <u>http://www.rsc.org/publishing/ebooks/2007/9780854042418</u>. .asp

1.1 Vergleich LM – TEM

(Durch-)Lichtmikroskop

 $\lambda \approx 400...700 \text{ nm}$ d_{min} $\approx 300 \text{ nm}$ d_{min} $\leq \lambda$

Ernst Abbe

$$d_{min} = 0.61 \frac{\lambda}{n \cdot \sin \alpha}$$

Transmissionselektronenmikroskop

 $\lambda \approx 2 \cdot 10^{-3} \text{ nm}$ $d_{min} \approx 10^{-1} \text{ nm}$ $d_{min} \approx 50 \lambda$ sphärische Aberration C_s
der magn. Linsen

$$d_{min} = 0,91\sqrt[4]{C_S \cdot \lambda^3}$$

Objekt

Bild

Metallische Werkstoffe

1.2 TEM Aufbau und Funktion

1.4 Analytische Möglichkeiten

Mikroskopie

Metallische Werkstoffe

<u>Low</u>

DF

Beugung (ED)

CBED

Spektroskopie

1.5 Rastertransmissionselektronenmikroskopie STEM

- fokussierter Strahl rastert Probe ab
- → Raster-Bilder mit sub-nm-Auflösung
- \rightarrow Auskartieren von:
 - Elementverteilungen
 - Kristallorientierungen
 - Phasenverteilungen
 - Spannungszuständen

[Fultz 2008]

1.6 Anwendungsfelder TEM

- höhere Auflösung als REM
 → Abbildung von Defekten mit "atomarer" Auflösung
 - → keine atomar glatte Oberfläche für atomare Auflösung notwendig (wie bei AFM)

[[]Dao et al. Acta Mater 2007]

• auch für Analyse (STEM-EDS / -EELS)

SrTiO₃

[Allen et al. MRS Bull 2012]

Friedrich-Schiller-Universität Jena 1.6 Anwendungsfelder TEM Metallische Werkstoffe sehr lokale Beugungsanalyse \rightarrow wenige nm Intensity [aU] XRD 10 g [nm⁻¹] Intensity [aU] **TEM SAD** [Gammer 2011] g [nm⁻¹]

• Einkristallbeugung in polykristallinen Material (einzelne Körner)

1.7 Abkürzungen

BF (HF)	Hellfeld (Bright Field)
DF	Dunkelfeld (Dark Field)
CBED	Konvergente Elektronenbeugung (Convergent Beam Electron Diffraction)
EDS (EDX)	Energiedispersive Röntgen Spektroskopie (Energy Dispersive X-ray Spectroscopy)
EELS	Elektronen Energieverlust Spektroskopie (Electron Energy Loss Spectroscopy)
ED	Elektronenbeugung (Electron Diffraction)
FIB	Fokussierter Ionenstrahl (Focussed Ion Beam)
FOLZ	1. Laue Zone (First Order Laue Zone)
HOLZ	Laue Zonen höherer Ordnung (n>2) (High Order Laue Zones)
HRTEM (HREM)	Hochauflösende Transmissionselektronenmikroskopie (High Resolution)
NBED (NBD)	Nanostrahl Elektronenbeugung (Nano Beam Electron Diffraction)
SAED (SAD)	Feinbereichsbeugung (Selected Area Electron Diffraction)
STEM	Rastertransmissionselektronenmikroskopie (Scanning Transmission)
ZOLZ	O. Laue Zone (Zero Order Laue Zone)

- Elektronentransparenz \rightarrow t \leq 100 nm
- Oberflächen- ↔ Volumen-Eigenschaften
- Nur begrenzter Bereich für Untersuchung
- Präparationseffekte
 - Energie-/Wärmeeintrag
 - Einbringen von Defekten (Versetzungen, Implantieren)
 - Phasenselektiver Abtrag (mehrphasige Proben)
 - Amorphisierung der Oberfläche
 - Rückabscheidung von Material
 - Relaxieren von Eigenspannungen

...

2.2 Präparationsmethoden (Finish)

Physikalisch:

Metallische Werkstoffe

Ionenstrahlpolitur

• Focused Ion Beam (FIB)

Chemisch:

Elektrolytstrahlätzen

2.4 weitere Präparationsmethoden

Partikel → Dispergieren auf Trägerfilm (Kohle-Loch)

Kryoschnitte (Ultramikrotom) → Polymere, Biologie

3. Spektroskopie (chem. Analyse)

- unelastische Streuung der Elektronen an Atomhüllen
- → Ionisierung
 charakteristischer Energieverlust
 gestreuter Elektronen
 Energie-Verlust-Spektroskopie (EELS)
- → Auffüllen

Metallische Werkstoffe

> charakteristische Röntgenstrahlung energiedispersive Röntgenspektroskopie (EDS)

3.1 EDS - Unterschiede zum REM

- 10x höhere Anregungsspannung
- Probe muss zu Detektor gekippt werden (größerer Abstand)
- dünne Proben

- → nur Hals der Anregungsbirne
- → höhere Ortsauflösung
- → keine ZAF-Korrektur nötig
- → geringere Zählraten

Electron transitions of major X-Ray lines

Röntgenemissionslinien
 = charakteristische
 Übergänge in e⁻Hülle

 Quantifizierung der Zusammensetzung durch Anpassung des gesamten Spektrums über serial-fit

Metallische Werkstoffe 3.1 EDS – STEM mapping

3.2 EELS

Metallische Werkstoffe

Slit

3.2 EELS-Spektrum

- e⁻-Strahl verliert Energie durch unelastische Wechselwirkung mit der Probe
- Spektrum = Häufigkeitsverteilung über Energieverlust der e⁻
- Zero-loss peak
 → keine Wechselwirkung
- Maxima = Absorptionskanten
- Intensität sinkt stark mit Energie
 → Nachverstärkung ab ~100eV
 → empfindlich für niedrige Z

3.3 Gegenüberstellung EELS – EDS

EELS

Hohe Empfindlichkeit für kleine Z

Energie-Auflösung = 0,3-2 eV → Feinstruktur der Orbitale

Chemische Zusammensetzung

Quantifizierung < ± 10 at%

hohe Ausbeute und hohes Signal-Rausch-Verhältnis → effizientes Mapping

Schneller, komplexere Auswertung

EDS

Hohe Empfindlichkeit für hohe Z Z > 10 \rightarrow Na

Energie-Auflösung >100 eV → Signal-Überlappung

Nur elementare Zusammensetzung

Quantifizierung < \pm 1 at%

geringere Ausbeute und geringes Signal-Rausch-Verhältnis → ineffizientes Mapping

Langsamer, einfache Auswertung