4. Beugungsmuster im TEM

SAED

Metallische Werkstoffe

- •Selected Area Electron Diffraction
- Ortsauflösung ≥ 200nm
- Standardmethode
- Phasenanalyse (+EDX)
- Bestimmung einfacher Orientierungsbeziehungen
- •BF, DF-Untersuchung

Kikuchi

- Kikuchi-Beugung
- Ortsauflösung≥ 50nm
- Probenorientierung (Kippexperimente)

CBED

- •Convergent Beam Electron Diffraction
- Ortsauflösung≥ 10nm
- Umfassendere kristallographische Information
- Bestimmung von: Raumgruppe, Probendicke, Gitterparameter, Burgers Vektoren

NBED

- Nano Beam Electron
 Diffraction
- Laterale Auflösung ≈
 1nm → Gitterdefekte
- Beugungsanalyse von Nanomaterialien

4.1 Bragg- und Laue-Bedingung

- Bragg: $n\lambda = 2d \sin \theta$ realer Raum
- Laue: k - k' = g

Metallische Werkstoffe

reziproker Raum

→ Ewald-Kugel & reziprokes Gitter

Metallische Werkstoffe

 thin-foil effect: reziproke Gitterpunkte entarten zu Stäbchen entlang der Probendicke t → Anregungsfehler s

4.1 Strahlengang im Beugungs-Modus

Beugungsbild in hinterer Fokusebene der Objektivlinse

A) Beugungs-Modus

- Fokusebene d. Objektivlinse = Objektebene d. Zwischenlinse
- SAD-Blende bestimmt Bildausschnitt

B) Abbildungs-Modus

- Bildebene d. Objektivlinse = Objektebene d. Zwischenlinse
- Objektiv-Blende bestimmt Diffraction pattern Kontrast

4.1 Indizieren von SADP

 Bestimmung von Netzebenenabständen d_{hkl}

$$d_{hkl} = \lambda \frac{L}{R}$$

- Kameralänge L
 - Abhängig von Nachvergrößerung
 - wird über Beugungsstandard (mono-Si, poly-TICI) bestimmt

- L ...Kameralänge (Abstand Probe-Schirm)
- R ...Entfernung Reflex zu direkten Strahl [000]
- $\mathbf{d}_{\mathbf{hkl}}$...Netzebenenabstand

4.1 Indizieren von SAD-Ringmustern

- Zusammensetzung bekannt (EDS) → mögliche Kristallstrukturen eingrenzen
- d_{hkl} aus Ringradien bestimmen

Metallische Werkstoffe

• Vergleich mit Powder Diffraction Files (ICDD)

Metallische Werkstoffe

4.1 Indizieren von SAD-Punktmustern

- Ausnutzen von Winkeln φ und Längen g zum Ursprung [000]:
 - i. g-Vektoren d. rez. Gitters parallel zu Ebenennormalen des Raumgitters \rightarrow Winkel zwischen g-Vektoren = Winkel zwischen Ebenennormalen

$$\cos\varphi = \frac{h_1h_2 + k_1k_2 + l_1l_2}{\sqrt{h_1^2 + k_1^2 + l_1^2}\sqrt{h_2^2 + k_2^2 + l_2^2}}$$

ii. Längen der Beugungsvektoren g bzw. deren Verhältnisse

$$|g| = \frac{1}{d_{hkl}} = \frac{\sqrt{h^2 + k^2 + l^2}}{a}$$

iii. Normalenrichtung → Kreuzprodukt

4.1 Indizieren von SAD-Punktmustern

Vorgehensweise zum indizieren eines Punktmusters

- 1) Probe in niedrig indizierten Pol (Zonenachse) kippen \rightarrow symmetrisches DP
- 2) |g| bzw. d_{hkl} bestimmen → mit Liste vergleichen (Powder Diffraction Files) alternativ: Längenverhältnisse bestimmen und vergleichen → Ebenenfamilie (Kandidaten)
- 3) erster Reflex: Indizierung (h₁k₁l₁) festlegen
- 4) Weitere Reflexe: Indizierung (h_ik_il_i) über Winkelbeziehung φ_{1i} festlegen
 → trial and error
- 5) Normalenrichtung: Kreuzprodukt (rechte-Hand-Regel)

[Molnar et al. NanoLett 2013]

4.2 Kikuchi-Beugung

dickere Probenbereiche
 → diffuse Streuung

- einige gestreute e⁻ mit
 Bragg-Winkel θ_B zu Netz ebenen → Beugung
- 2 Beugungskonusse (Kossel-Konusse) pro Netzebene

- Konusse schneiden Schirm nahe optischer Achse (θ klein) \rightarrow 2 parallele Kikuchi-Lipien im Beugungshild
 - \rightarrow 2 parallele Kikuchi-Linien im Beugungsbild
- Spur der beugenden Netzebene genau mittig zwischen Kikuchi-Linien

Metallische Werkstoffe

Friedrich-Schiller-Universität Jena

Abstand zwischen Linienpaar = g = 1/d

 Deficient Lines (D) : dunkel, n\u00e4her am direkten Strahl

4.2 Kikuchi-Linien

- Excess Lines (H) : hell, weiter weg von direkten Strahl
- Ursache: gestreute e⁻, die n\u00e4her am direkten Strahl sind, haben h\u00f6here Intensit\u00e4t, werden aber weiter weg gebeugt
- Kikuchi Band (B): Linenpaar gleich nah am direkten Strahl → Netzebene genau senkrecht zu Schirm

4.2 Orientieren mit Kikuchi-Beugung

• Kikuchi-Maps

T(1101)

A-[1]04]

[1216]

12420

[1126]

Metallische Werkstoffe

> → Bestimmung der Kristallorientierung

> > T(3302)

T(2201)

→ Kipp-Experimente im TEM, mit Hilfe simulierter Muster

4.3 CBED konvergente Beugung

konvergente
 Beleuchtung

- → Reflexe werden zu Beugungsscheiben
- Durchmesser
 der Beugungs scheiben wird
 durch
 Konvergenz winkel α
 bestimmt

Metallische Werkstoffe

- Strahlkegel wird durch Konvergenz schon angeboten

 → für Linienmuster keine diffuse Streuung im Material nötig
- Netzwerk feiner Linien innerhalb der Beugungsscheiben
 → HOLZ-Linien (High Order Laue Zone)

mit

excess

HOLZ-Linien

transmittierte Scheibe mit **deficient** HOLZ-Linien

4.3 CBED

- deficient-HOLZ-Linien: in HOLZ-Reflexe (Excess-HOLZ-Linien) gebeugte Intensität fehlt in der zentralen Scheibe
- → zentrale Scheibe enthält Information höherer Beugungsordnungen
- Bestimmung von:
 - Punkt- bzw. Raumsymmetrie
 - Probendicke
 - präzise Gitterparameter
 - mech. Spannungen (Gitterdefekte)

4.4 NBED Nano Strahl Beugung

- maximale laterale Auflösung ≤ 1nm
- Öffnungswinkel 2α << 2θ
 ≈ 1 mrad = 0,06°
- Übergang zu Punkt-Beugungsmuster

Metallische Werkstoffe

> Beugungsscheiben ohne HOLZ-Linien

Öffnungswinkel α

4.4 NBED

Metallische Werkstoffe

[Seyring et al. ACSNano 2011]

- Strahldurchmesser ≥ 1nm
 - → Beugungsanalyse mit lateraler Auflösung ≈ 2nm

. .

Friedrich-Schiller-Universität Jena

4.4 Ausscheidungen in Al-Mg-Si

geringer Volumenanteil der Mg₂Si Ausscheidungen
 →ermöglicht keine Phasenanalyse per SAD

4.4 Ausscheidungen in Al-Mg-Si

Friedrich-Schiller-UniversitätJena

[Seyring et al. Pract.Met. 2012]

- Ausscheidungen: hexagonale β '-Phase
- $[001]_{AI} | | [001]_{\beta'}; (220)_{AI} | | (100)_{\beta'}$